If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-14x-31=0
a = 25; b = -14; c = -31;
Δ = b2-4ac
Δ = -142-4·25·(-31)
Δ = 3296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3296}=\sqrt{16*206}=\sqrt{16}*\sqrt{206}=4\sqrt{206}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-4\sqrt{206}}{2*25}=\frac{14-4\sqrt{206}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+4\sqrt{206}}{2*25}=\frac{14+4\sqrt{206}}{50} $
| 3x–9=21+2x | | Y=x^2-14X-13 | | 329*x=47 | | 27=6xxxx.5 | | 126*x=27 | | 27=(6x)(x)(.5) | | 5^-9x=8^-x+4 | | b−3=4 | | (x/7)-5=-15 | | 4x+3x-5(x-1)=45 | | 3X/3=3x/3 | | 4x-18=-3-× | | (x+3)x2=x+7 | | 12(3x-3)=-36 | | 8(2x-1)=-136 | | 6x=-4-50 | | x+x+x+x=-56 | | 12+y=42 | | –8(x+10)=–72 | | 4x+9x-23=55 | | 5d+5d=100 | | 2x+1=5-3x+16 | | 11-8x+17=20 | | 4-85=-8x+107 | | 9(c+12)=45 | | 2x-7+3x=38 | | ?=-4x-50 | | (x/7)-5=-5=-15 | | Y=-2x2-8x-11 | | 3x-200=-32 | | 23-7=17z= | | Y=-x2-4x-3 |